Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.

Identifieur interne : 000481 ( Main/Exploration ); précédent : 000480; suivant : 000482

TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.

Auteurs : Adiel Cohen ; Aline Habib [Israël] ; Dana Laor [Israël] ; Sudhanshu Yadav ; Martin Kupiec [Israël] ; Ronit Weisman [Israël]

Source :

RBID : pubmed:29632066

Descripteurs français

English descriptors

Abstract

The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast Schizosaccharomyces pombe, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the S. pombe mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in S. pombe.

DOI: 10.1074/jbc.RA118.002270
PubMed: 29632066
PubMed Central: PMC5971458


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.</title>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<affiliation>
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</nlm:affiliation>
<wicri:noCountry code="subField">Israel and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Habib, Aline" sort="Habib, Aline" uniqKey="Habib A" first="Aline" last="Habib">Aline Habib</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Sudhanshu" sort="Yadav, Sudhanshu" uniqKey="Yadav S" first="Sudhanshu" last="Yadav">Sudhanshu Yadav</name>
<affiliation>
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</nlm:affiliation>
<wicri:noCountry code="subField">Israel and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and ronitwe@openu.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana</wicri:regionArea>
<wicri:noRegion>4353701 Ranana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29632066</idno>
<idno type="pmid">29632066</idno>
<idno type="doi">10.1074/jbc.RA118.002270</idno>
<idno type="pmc">PMC5971458</idno>
<idno type="wicri:Area/Main/Corpus">000580</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000580</idno>
<idno type="wicri:Area/Main/Curation">000580</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000580</idno>
<idno type="wicri:Area/Main/Exploration">000580</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.</title>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<affiliation>
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</nlm:affiliation>
<wicri:noCountry code="subField">Israel and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Habib, Aline" sort="Habib, Aline" uniqKey="Habib A" first="Aline" last="Habib">Aline Habib</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Sudhanshu" sort="Yadav, Sudhanshu" uniqKey="Yadav S" first="Sudhanshu" last="Yadav">Sudhanshu Yadav</name>
<affiliation>
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</nlm:affiliation>
<wicri:noCountry code="subField">Israel and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and ronitwe@openu.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana</wicri:regionArea>
<wicri:noRegion>4353701 Ranana</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatin (genetics)</term>
<term>Chromatin (metabolism)</term>
<term>Gene Silencing (MeSH)</term>
<term>Heterochromatin (genetics)</term>
<term>Heterochromatin (metabolism)</term>
<term>Histones (genetics)</term>
<term>Histones (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Telomere (genetics)</term>
<term>Telomere (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatine (génétique)</term>
<term>Chromatine (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Histone (génétique)</term>
<term>Histone (métabolisme)</term>
<term>Hétérochromatine (génétique)</term>
<term>Hétérochromatine (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Télomère (génétique)</term>
<term>Télomère (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chromatin</term>
<term>Heterochromatin</term>
<term>Histones</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chromatin</term>
<term>Heterochromatin</term>
<term>Histones</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromatine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Histone</term>
<term>Hétérochromatine</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Télomère</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chromatine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Histone</term>
<term>Hétérochromatine</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Télomère</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Silencing</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Extinction de l'expression des gènes</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast
<i>Schizosaccharomyces pombe</i>
, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the
<i>S. pombe</i>
mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in
<i>S. pombe</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29632066</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.</ArticleTitle>
<Pagination>
<MedlinePgn>8138-8150</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.002270</ELocationID>
<Abstract>
<AbstractText>The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast
<i>Schizosaccharomyces pombe</i>
, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the
<i>S. pombe</i>
mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in
<i>S. pombe</i>
.</AbstractText>
<CopyrightInformation>© 2018 Cohen et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Adiel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Habib</LastName>
<ForeName>Aline</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laor</LastName>
<ForeName>Dana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yadav</LastName>
<ForeName>Sudhanshu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kupiec</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weisman</LastName>
<ForeName>Ronit</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel and ronitwe@openu.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006570">Heterochromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C476401">Gad8 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="Y">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006570" MajorTopicYN="N">Heterochromatin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016615" MajorTopicYN="N">Telomere</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Akt PKB</Keyword>
<Keyword MajorTopicYN="Y">Epe1</Keyword>
<Keyword MajorTopicYN="Y">Paf1 complex</Keyword>
<Keyword MajorTopicYN="Y">Schizosaccharomyces pombe</Keyword>
<Keyword MajorTopicYN="Y">TORC2</Keyword>
<Keyword MajorTopicYN="Y">gene expression</Keyword>
<Keyword MajorTopicYN="Y">gene silencing</Keyword>
<Keyword MajorTopicYN="Y">heterochromatin</Keyword>
<Keyword MajorTopicYN="Y">mating-type locus</Keyword>
<Keyword MajorTopicYN="Y">subtelomeres</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29632066</ArticleId>
<ArticleId IdType="pii">RA118.002270</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.002270</ArticleId>
<ArticleId IdType="pmc">PMC5971458</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Mar;8(3):539-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23429716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Mar;11(3):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Aug;29(16):4584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2013 Sep 1;27(17):1886-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Jun;25(6):872-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25778913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 1;289(31):21727-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Jan 23;27(2):175-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28041796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2017 Nov;18(11):643-658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28804139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14 (10 ):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2013 Sep 02;6(1):29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24044743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 May;20(5):547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23604080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 6;292(5514):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Jul 07;6(4):e00959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 13;297(5588):1833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Mar;31(5):1088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21189291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Oct 30;10(10):e1004740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25356590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jan 6;335(6064):96-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Apr;6(4):315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 May 9;153(4):840-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Sep 04;18(10):1132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21892171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 14;26(22):4670-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 Jul-Aug;43(4):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Jan;4(1):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11780129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2015 Jul 01;7(7):a018770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26134317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Aug;37(8):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15976807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 21;294(5551):2539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 7;278(10 ):8487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12488447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Jan 7;144(1):41-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2017 Oct;42(10 ):788-798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28870425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 May 5;62(3):443-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27151441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24556838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Dec;18(12 ):2197-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jan 06;7(1):e1001268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Apr 22;291(17 ):9371-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 5;140(5):666-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Apr;175(4):1549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2015;14(6):848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25590601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Sep;32(1):143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2016 Oct;4(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27763256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2016 Dec 1;30(23 ):2571-2580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27941123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Jan;8(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2011 Dec;23(6):744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jan 1;23(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2015 Dec;16(12):1673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26518661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Mar;11(3):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jul 27;547(7664):463-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28682306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2015 May;5(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25972440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Mar 18;44(5):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26578583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jun;23(12):4356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 25;304(5679):1971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Nov 2;44(19):9180-9189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):551-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Apr 9;520(7546):248-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25807481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Nov 16;43(20):9766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26275777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Jul 1;129(13):2613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27206859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2014;13(5):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24526113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Nov 21;155(5):1061-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24210919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Mar 3;61(5):747-759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26942678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):19649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Oct 13;45(18):10333-10349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981863</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<name sortKey="Yadav, Sudhanshu" sort="Yadav, Sudhanshu" uniqKey="Yadav S" first="Sudhanshu" last="Yadav">Sudhanshu Yadav</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Habib, Aline" sort="Habib, Aline" uniqKey="Habib A" first="Aline" last="Habib">Aline Habib</name>
</noRegion>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000481 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000481 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29632066
   |texte=   TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29632066" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020